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IDENTIFICATION OF TWO-DIMENSIONAL HEAT FLOWS IN ANISOTROPIC 

BODIES OF COMPLEX FORM 

V. F. Formalev UDC 5 3 6 . 2 4 5 . 2  

A method is proposed for numerical determination of two-dimensional tempera- 
ture fields in anisotropic bodies with an arbitrary boundary for use in ,co- 
efficient inverse heat-conduction problems. 

In solving coefficient inverse heat-conduction problems, it is necessary to first 
evaluate the temperature field on the basis of approximate thermophysical characteristics 
(ARC). The availability of suitable methods and application packages makes it possible, 
by varyin~ the approximately assigned ATC, to establish the empirical temperature fields 
that will be used in determining the sought ATC. 

Here, weexamine the formulation the numerical so_~ution .of two-dimensional nonlinear 
proble/ns of heat conduction in anisotropic bodies in which complex heat transfer is taking 
place. Without simplications~, the method makes it possible to identify full-scale tem~pera- 
ture fields that are then used to determine the principal components 16 , lq of the thermal 
:conductivity tensor. 

The mathematical model has the following form (Fig. I): 

0T 
c ( r )  p 0~ = div  (A grad T);  ( 1 )  

(-~-~).n(lel--lw*)--AgradT/~l--e~1~ 

f o r m  

(2 )  

aw2 (T,~ - -  T~2) + A ~ a d  T/w2 - -  etoo. oT~2 = 0; ( 3 )  

T(r, O, x)= T~3(r, x); T(r, ~, T ) =  Twi(r, x); ( 4 )  

r (r, 0, o) = ~ (r, 0).  ( 5 )  

In ,curvilinear coordinates, the components of the thermal conductivity tensor have the 

~,, = ~. (T) cos z (0 v - -  tp) -b  ~,n (T) .s in  z (O v - -  ~) ;  

;%0 = ~,~ (7)  s in  2 (0 ~ _ ~)  + ~.n (T) c0s z (0 ~ - -  ~) ;  

L,o --=- ~,o, = [;% (73 - -  ;~t (T)[ s in  (0 v - -  ~)  cos (0 v - -  ~),  

where 9 = 1 for curvilinear coordinates and ~ = 0 for cartesian coordinates. 

In solving boundary-value problem (1)-(5), we encounter the problem of allowing for 
the oblique derivative at the boundary wl in boundary condition (2) and Itsrelationshi~ 
with the behavior of the boundary rwl = f(8). 

After projecting the balance (2) in the direction of a normal to the boundary wl,, the 
author of [I] obtainedthe following representation of the heat flux normal to the houn~y 
wl: 

(6) 
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Comparison of the numerical solution with the ana- 
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 rr+2 ro n r ,do j rVlO0 rV d 0 . 1 + r~ldO �9 (7 )  

Thus, first of all, this form accounts for the behavior of the boundary wl by means of the 
function rwl = f(8), thus significantly reducing the losses of heat flows on the boundary 
wl in the numerical realization; secondly, Eq. (7) can be adapted for branching in the 
coordinate directions r and 8 in economical numerical branching methods; third, Eq. (7) 
includes components of thermal conductivity tensor (6) which are dependent on the princi- 
pal components I~ and In, rather than on the values of thermal conductivity I n in the di- 
rection normal to the boundary wl, which is unknown. 

The most economical and at the same time accurate method of solving problems of the 
type (1)-(5) is the method of longitudinal-transverse directions [2]. However, it can be 
shown [3] that this method is conditionally stable. In order to ensure absolute stability 
of this method while retaining its accuracy and economy, it is suggested that the method 
of straight lines be used to extrapolate the solution from the previous time layer to the 
theoretical time layer. In a nine-node finite-difference scheme, it suffices to do this 
for the upper space layer, since the temperature distribution is already known on the lower 
layer. 

Consequently, using extrapolation of the grid functions from the k-th layer to the 
(k + l)-st layer by the method of straight lines, we obtain the following Cauchy problem 
for extrapolated temperatures 

d r  .:: A T - F  B; 
dT (8)  

the solution of which is the expression 

-= 7 "~ + (B - -  A T  ~) ,~z (E - -  AAr;2) + O (At3). ( 10 ) 

T h i s  s o l u t i o n  does  n o t  i n c l u d e  t r a n s f o r m a t i o n s  o f  t h e  m a t r i x  A, i . e . ,  t h e r e  i s  no d e c r e a s e  
in  t h e  economy o f  t h e  b a s i c  scheme.  However ,  t h e r e  i s  a s u b s t a n t i a l  improvemen t  in  i t s  
s t a b i l i t y ,  b r i n g i n g  t h e  s o l u t i o n  T c l o s e r  t o  i m p l i c i t  g r i d  f u n c t i o n s  T k+l  w i t h  t h e  e r r o r  
0(AT3). 

In the case of an arbitrary boundary wl, the longitudinal coordinate lines rj = const 
may enter and exit the theoretical region, which appreciably complicates approximation of 
the heat-flux balance (2) in the neighborhood of the boundary wl. To realize the approxima- 
tion, we developed a method of inserting the specified theoretical region into a region with 
the classical boundary wl. Then the problem is solved continuously along the coordinate 
lines. Meanwhile, if the entire neighborhood of the node turns out to be outside the theo- 
retical region, then the grid function takes a value of zero. 
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Fig. 3. Heat-transfer coefficient ~wl (i), kWl(m2.K), and 
the coordinates of the external boundary rwl = f(O) (2), m. 

Fig. 4. Change in the temperature field along the middle 
line r = (R 0 + R2)/2. 

In cases when the neighborhood of the boundary node is partly inside and partly outside 
the theoretical region, no energy is stored at the node if ri_ l < riw I < ri_i/2. If r]_i/2 < 

< riw I ri, the energy storage is considered in the volume (riw I - ri_i/2)A~ and is included 
in the approximation of the balance (2). Here, the conservativeness of the finlte-dlffer- 
ence scheme is maintained. 

In approximating the balance (2), we consider given heat fluxes by means of the unit 
functions: 

0, i f  x~O; ~(x)= 1, ~ x > O ,  

which has made it possible to use the single balance approximation (2) for a wide range of 
different forms relative to the position of the boundary wl and the nodes of the fixed grid. 

Thus, balance approximation (2) has the form 

c, j,o, ( l l) 
~l(r,,~--r,_,..._,) (cp)~ (r,~,- r,_vo)-~-~T I [1 + ( df ]2].'m 

= " t,~l n"~ idO / 

where ~n is found from Eq. (7). 

To calculate the derivatives df/riw19d8 in (ii) with a high degree of accuracy, the 
boundary wl is approximated by cubic splines. As a result, the derivative f' = drwl/rwlVdB 
represents a quadratic monomial in the variable 8. 

In the next time layer in approximation (ii), the longitudinal difference operators are 
represented implicitly, while the radial operators are calculated by means of extrapolation 
using the straight line method. 

Figure 2 compares the solution obtained by the given method to the analytical solution 
in [4] in an anisotropic half-space 

% 

T = T 0 ,[ (y/r's/2) (~pc/4ky~)'/2 exp (-- 9 z pc/4~uyr') X 
0 

with the first boundary condition T(x, O, •)= [ TO, Ixl<~L [0, Ixl >i and a zero initial condition. Here, 

x and y are cartesian coordinates. The following values were taken as the input data: ~ = 
4.2.10 -3 kW/(m.K); lq = 4.2.10 -~ kW/(m.K); ~ = 150; L = 0.02 m; To = 1000 K; cp = 600 kJ/ 
(m ~ "K). 
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Comparison of the results shows that the method is satisfactorily accurate (error no 
worse than 5% for small numbers Fo). An increase in Fo is accompanied by a reduction in 
the error of the method. 

Calculations were performed for the conditions in Fig. 3 to establish two-dimensional 
nonsteady temperature fields in anisotropic bodies with an arbitrarily assigned boundary. 

Figure 4 shows the results of calculations, performed for the middle line r = (R0 - 
R2)/2, in the form of the relations T/T e = @(e, Fo). It is evident from the figure that 
the temperature field is two-dimensional and quite unsteady. 

We took the following initial data for the calculations: T(r, 8, 0) = 300 K = const; 
cp = 1500 kJ/(m3.K); ~ = 0.084 kW/(m.K); X~ = 0.168 kW/(m.K); ~ = 30~ R0 = 0.018 m; R 2 = 
0.01 m; T e = 2200 K. 

NOTATION 

r, 8, curvilinear coordinates, m, rad; ~, time, sec; I, enthalpy, kJ/kg; T, tempera- 
ture, K; =, heat-transfer coefficient, kW/(m2.K); c, heat capacity, kJ/(kg-K); p, density, 
kg/m3; e, emissivity; a, Stefan-Boltzmann constant; %~, Xn, components of the principal 
thermal conductivity gensor, kW/(m.K); %rr, ErS, ~88, components of the thermal conductiv- 
ity tensor, kW/(m.K); ~, angle between the axis g and axis B = 0; &r, be, At, space and 
time steps in numerical integration. Indices: wl, external boundary; w2, internal bound- 
ary; el, gas on the external boundary; e2, gas on the internal boundary; ~, n, principal 
axes of thermal conductivity; n, direction of the normal; k, preceding time layer; k + i, 
theoretical time layer; i, j, node with the coordinates 8 = 8i, r = rj. 
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